

2022 Annual **Water Quality Report**

2022 Annual Water Quality Report

Monroe County Water Authority 475 Norris Drive Rochester, New York 14610

ID# NY1800547 NY3401158 PWS ID# NY2701047 PWS

> RICHMOND MCWA GENESEE MCWA RICHMONI MCWA

#O WS

SCAN CODE FOR AWOR REPORT:

The Monroe County Water Authority is pleased to provide you this report on the quality of your drinking water which describes its sources, treatment and test results.

MCWA | Established 1950

MCWA Water Quality Summary Table

2022 Calendar Year Results

				20	22 Calendar I	ear nesuits -			
	Supply Source -			MCWA Production Water:		MCWA Purchased Water:			
Detected Substances:				SWTP & WWTP -	CWTP -	Rochester -	ECWA -	Likely Sources in Drinking Water:	Water
	Source -			Lake Ontario	Well Field	Hemlock Lake	Lake Erie		Quality Violation:
	(So	ource Ty	pe)	(Surface Water)	(Groundwater)	(Surface Water)	(Surface Water)		violation.
	Units	MCLG	MCL		Range of dete	ected values:			Yes or No
arium	mg/L	2	2	0.019 - 0.023	0.09 - 0.2	0.014	0.02	Erosion of natural deposits	No
hloride	mg/L	NA	250	25 - 29	49 - 93	27 - 38	19 - 24	Naturally occurring	No
uoride	mg/L	NA	2.2	0.42 - 1.15	0.12 - 0.13	0.09 - 0.85	0.11 - 0.71	Naturally occuring & additive for dental health	No
langanese	μg/L	NA	300	ND	2.9 - 8.5	ND	ND	Naturally occurring	No
itrate	mg/L	10	10	ND - 0.4	ND	ND	0.55	Erosion of natural deposits	No
erfluorooctanesulfonic acid (PFOS)	ng/L	NS	10	ND - 2.1	ND	ND	ND	Environmental releases from textile sources	No
erfluorobutanoic acid (PFBA)	ng/L	NS	10	ND - 2.8	ND	ND	ND - 2.7	Environmental releases from textile sources	No
odium	mg/L	NA	NS	15 - 17	36 - 87 *	16 - 21 *	12 - 15	Naturally occurring	No
ulfate	mg/L	NA	250	25 - 27	44 - 48	10 - 26	19 - 22	Naturally occurring	No
urbidity - Turbidity is a measure of c	loudiness o	or clarity o	of the water.	Turbidity has no health	effects. MCWA monito	ors turbidity because it is	a good indicator of the	effectiveness of our filtration systems and	
ater quality. State regulations requi	ire that turb	bidity mus	st always be	below 1 NTU in the com	bined filter effluent. Th	e regulations also requi	re that 95% of samples o	collected from the entry point have measurement	s
elow 0.3 NTU and the highest month	nly average	for distrib	bution syste	m samples be below 5 N	TU. Averages, annual ra	inges and lowest month	ly percentages are listed	l.	
urbidity - Entry Point	NTU	NA	Π	0.04 (0.02 - 0.11) 100% < 0.3 NTU	NR	0.06 (ND - 0.15) 100% < 0.3 NTU	0.07 (0.01 - 0.26) 100% < 0.3 NTU	Soil Runoff	No
urbidity - Distribution	NTU	NA	5	4.22 - 3/24/2022	0.97 - 2/22/2022	4.22 - 3/24/2022	0.97 - 2/22/2022	Soil Runoff	No
licrobial Pararmeters - No more tha	n 5% of mo	onthly sam	nples can be	positive. The highest m	onthly % positive and nu	umber of samples is liste	ed.		
otal Coliform Bacteria	NA	0	тт	1.9% - August 7 samples	2.9% - October 1 sample	1.9% - August 7 samples	2.9% - October 1 sample	Naturally present in the environment	No
surce Water Microbial Pathogens - The highest positive month and number of samples is listed. In our treatment processes, Cryptosporidium is removed / inactivated through a combination of filtration and									
isinfection or by disinfection alone.									
ryptosporidium	OoCysts/L	0	Π	SWTP - 1 (Feb. & Nov.) 2 Samples	NR	ND	ND (2017)	Naturally occurring	No
isinfectant and Disinfectant By-proc	ducts (DBPs	s) - Chlorii	ne has a MR	DL (Maximum Residual I	Disinfectant Level) and N	MRDLG (MRDL Goal) rath	ner than an MCL and MC	CLG (Averages and ranges are listed). For the	
BPs (Total Trihalomethanes and Hale	oacetic Acio	ds) the an	nual system	averages, ranges for all	locations, and highest lo	cational running annual	averages for all location	ns are listed.	
hlorine Residual - Entry Point	mg/L	NA	MRDL = 4	1.14 (0.71 - 1.44) 0.83 (0.35 - 1.26)	1.11 (0.5 - 1.69)	0.83 (0.69 - 1.85)	1.54 (1.33 - 1.74)	Additive for control of microbes	No
hlorine Residual - Distribution	mg/L	NA	MRDL = 4	0.59 (ND - 1.85)	0.6 (ND - 1.55)	0.59 (ND - 1.85)	0.6 (ND - 1.55)	Additive for control of microbes	No
otal Trihalomethanes (TTHMs)	μg/L N	NA	80	38.6 (13 - 73)	41.5 (20 - 55)	38.6 (13 - 73)	41.5 (20 - 55)	Byproduct of water chlorination	No
				Max. LRAA = 55.8 Ma	Max. LRAA = 46.5	Max. LRAA = 55.8	Max. LRAA = 46.5	<i>,</i> ,	
aloacetic Acids (HAAs)	μg/L	NA	60	11.3 (ND - 30)	7.4 (ND - 32)	11.3 (ND - 30)	7.4 (ND - 32)	Byproduct of water chlorination	No
				Max. LRAA = 18.8	Max. LRAA = 11.8	Max. LRAA = 18.8	Max. LRAA = 11.8		
ead and Copper - 90% of samples must be less than the Action Level (AL). The 90th Percentile, the number of samples exceeding the AL, and the range of results are listed. (2021 monitoring period)									
opper - Customer Tap Samples	mg/L	1.3	AL = 1.3	0.130 (None) 0.008 - 0.47	0.142 (None) 0.004 - 0.29	0.130 (None) 0.008 - 0.47	0.142 (None) 0.004 - 0.29	Corrosion of household plumbing	No
ead - Customer Tap Samples	μg/L	0	AL = 15	3.2 (Two) ND - 130	0.63 (None) ND - 2.8	3.2 (Two) ND - 130	0.63 (None) ND - 2.8	Corrosion of household plumbing	No
There is no MCL set for sodium in water. However, EPA recommends that water containing more than 20 mg/L of sodium should not be used for drinking by people on severely restricted sodium diets. Water									
ontaining more than 270 mg/L of sodium should not be used for drinking by people on moderately restricted sodium diets.									
nregulated Contaminant Monitoring (UCMR4) - The EPA issues a new list of no more than 30 unregulated contaminants to be monitored by public water systems. This provides baseline occurrence data that the EPA									
ombines with toxicological research erformed UCMR4 monitoring in 201			oout future (drinking water regulation	ns. UCMR4 was publishe	ed in 2016 and required	public water systems to	participate in monotoring between 2018 - 2020.	MCWA
Alcohols, Indicators,	, Entry Points		Lake Ontario Supplies -		Purchased Water Supplies -		Groupdwater Supply -	Water	

performed oclark4 monitoring in 2016, 2013, and 2020.									
Alcohols, Indicators, Metals, Pesticides, SVOCs, and Cyantoxins:	Entry Points:			Lake Ontario Supplies -		Purchased Water Supplies -		Groundwater Supply -	Water Quality Violation:
	Units	MCL		SWTP	WWTP	Rochester	ECWA	CWTP	Yes or No
Manganese	μg/L	NA		ND	ND	ND	3.5 (0.77 - 6.3)	8.0 (6 -10)	NA
Bromide	μg/L	NA		36.3 (36 - 37)	36 (34 - 37)	ND - 22	NR	NR	NA
Total Organic Carbon	mg/L	NA		2.3 (2 - 2.4)	2.2 (1.9 - 2.3)	2.48 - 2.68	NR	NR	NA
HAA Groups:	Distribution System:			Combined System Summary:					
Total HAA (5)	μg/L	60		14.1 (0.74 - 31)					No
Total HAA (6) Br	μg/L	NA		7.4 (ND - 12)					
Total HAA (9)	μg/L	NA		21 (7.4 - 42)					
Bromochloroacetic acid	μg/L	NA		2.2 (ND - 4.4)					
Bromodichloroacetic acid	μg/L	NA		3.1 (ND - 5.9)					
Chlorodibromoacetic acid	μg/L	NA		1 (ND - 1.6)					NA
Dibromoacetic acid	μg/L	NA		0.5 (ND - 1.4)					NA
Dichloroacetic acid	μg/L	NA		6 (0.74 - 15)					NA
Trichloroacetic acid	μg/L	NA		7.5 (ND - 15)					NA
For more information on MCWA's water quality monitoring program call Customer Service at 585-442-7200 or visit our website at: www.mcwa.com.								<u>m</u> .	

Key Terms Used In Water Quality Table

MCL = Maximum Contaminant Level - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as possible.

MCLG = Maximum Contaminant Level Goal - The level of a contaminant below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

MRDL = Maximum Residual Disinfectant Level - the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

MRDLG = Maximum Residual Disinfectant Level Goal - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

LRAA = Locational Running Annual Average - The **SWTP** = Shoremont Water Treatment Plant annual average contaminant concentration at a monitoring site.

pCi/L = PicoCuries per liter.

TT = Treatment Technique - A required process intended to reduce the level of a contaminant in drinking water.

AL = Action Level - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

ND = Not Detected - Absent or present at less than testing method detection level. All testing methods are EPA approved with detection limits much less than the MCL.

NA = Not applicable.

NR = Not Required.

NS = No standard.

mg/L = Milligram (1/1,000 of a gram) per liter = ppm = parts per million

ug/L = Microgram (1/1,000,000 of a gram) per liter = ppb = parts per billion

ng/L = Nanogram (1/1,000,000,000 of a gram) per liter = ppt = parts per trillion

NTU = Nephelometric Turbidity Unit, a measure of water clarity.

- **CWTP** = Corfu Water Treatment Plant
- **WWTP** = Webster Water Treatment Plant
- **MCWA** = Monroe County Water Authority
- Rochester = City of Rochester
- **ECWA** = Erie County Water Authority

Compounds Tested For But Not Detected							
Benzene	Trichlorofluoromethane	Glyphosate	Monochloroacetic acid				
Bromobenzene	1.2.3-Trichloropropane	Hexachlorobenzene	Tribromoacetic acid				
Bromochloromethane	1.2.4-Trimethylbenzene	Hexachlorocyclopentadiene	Gross Alpha Particles				
Bromomethane	1,3,5-Trimethylbenzene	3-Hydroxycarbofuran	Radium 226				
n-Butylbenzene	Vinyl Chloride	3,5-Dichlorobenzoic Acid	Radium 228				
sec-Butylbenzene	o-Xylene	Methomyl	Combined Radium 226/228				
tert-Butylbenzene	m, p-Xylene	Metolachlor	Uranium				
Carbon Tetrachloride	Total Xylene	Metribuzin	11-chloroeicosafluoro-3-oxaundecane-1-sulfonic acid (11Cl-PF3OUdS)				
Chlorobenzene	Acifluorfen	Oxamyl (vydate)	1H,1H, 2H, 2H-perfluorodecane sulfonic acid (8:2FTS)				
Chloroethane	Alachior	Paraquat	1H,1H, 2H, 2H-perfluorohexane sulfonic acid (4:2FTS)				
Chloromethane	Aldicarb	Perchlorate	1H,1H, 2H, 2H-perfluorooctane sulfonic acid (6:2FTS)				
2-Chlorotoluene	Aldicarb sulfoxide	Picloram	4,8-dioxa-3H-perfluorononanoic acid (ADONA)				
4-Chlorotoluene	Aldicarb sulfone	Propachior	9-chlorohexadecafluoro-3-oxanonane-1-sulfonic acid (9CI-PF3ONS)				
Dibromomethane	Atrazine	Simazine	Hexafluoropropylene oxide dimer acid (HFPO-DA)(GenX)				
1,2-Dichlorobenzene	Baygon	2, 3, 7, 8-TCDD (Diaxin)	N-ethyl Perflurooctanesulfonamidoacetic acid (NEtFOSAA)				
1,3-Dichlorobenzene	Bentazon	Antimony	N-methyl Perflurooctanesulfonamidoacetic acid (NMeFOSAA)				
1,4-Dichlorobenzene	Carbofuran	Beryllium	Nonafluoro-3,6-dioxaheptanoic acid (NFDHA)				
Dichlorodifluoromethane	Chlordane	Chromium	Perfluoro (2-ethoxyethane) sulfonic acid (PFEESA)				
1,1 Dichloroethane	Dibromochloropropane	Cyanide	Perfluoro-3-methoxypropanoic acid (PFMPA)				
1,2-Dichloroethane	2, 4-D	Mercury	Perfluoro-4-methoxybutanoic acid (PFMBA)				
1,1-Dichloroethene	Endrin	Nickel	Perfluorobutanesulfonic acid (PFBS)				
cis-1,2-Dichloroethene	Ethylene Dibromide	Nitrite	Perfluorodecanoic acid (PFDA)				
trans-1,2-Dichloroethene	Heptachlor	Selenium	Perfluorododecanoic acid (PHDoA)				
1,2-Dichloropropane	Heptachlor Epoxide	Silver	Perfluoroheptanesulfonic acid (PFHpS)				
1,3-Dichloropropane	Lindane (gamma-BHC)	Thallium	Perfluoroheptanoic acid (PFHpA)				
2,2-Dichloropropane	Methoxychlor	Zinc	Perfluorohexanesulfonic acid (PFHxS)				
1,1-Dichloropropene	p,p' DDD	Surfactants (Foaming Agents)	Perfluorohexanoic acid (PFHxA)				
1,3-Dichloropropene(cis)	p,p' DDE	Giardia Lamblia	Perfluorononanoic acid (PFNA)				
1,3-Dichloropropene(trans)	p,p' DDT	Germanium	Perfluorooctanoic acid (PFOA)				
Ethylbenzene	PCB's Total	alpha-Hexachlorocyclohexane	Perfluoropentanesulfonic acid (PFPeS)				
Hexachlorobutadiene	Pentachlorophenol	Chlorpyrfos	Perfluoropentanoic acid (PFPeA)				
p-isopropyltoluene	Toxaphane	Dimethipin	Perfluorotetradecanoic acid (PFTA)				
Methyl Tert-butyl ether (MTBE)	2, 4, 5-TP (Silvex)	Ethoprop	Perfluorotridecanoic acid (PFTA)				
Methylene Chloride (Dichloromethane)	Aldrin	Oxyfluoren	Perfluoroundecanoic acid (PFUnA)				
n-Propylbenzene	Benzo(a)pyrene	Profenofos	Total Microcystin				
Styrene	Butachlor	Tebuconazole	Microcystin-LA SCAN CODE FOR AWOR REPORT:				
1,1,1,2-Tetrachloroethane	Carbaryl	Permethrin, cis & trans	Microcystin-LF				
1,1,2,2-Tetrachioroethane	Dalapon	Tribufos	Microcystin-LR				
	Di(2-Ethylhexyl) Adipate	Butylated hydroxyanisole	Microcystin-LY				
Toluene 1.2.3-Trichlorobenzene	Di(2-Ethylhexyl) phthalate (DEHP) Dicamba	o-Toluidene Quipoline	Microcystin-RR				
1,2,3-Trichlorobenzene	Dicamba Dieldrin	Quinoline 1-Butanol	Microcystin-YR Nodulatia				
1,2,4-Irichlorobenzene 1,1,1-Trichloroethane	Diegeh	2-Methoxyethanol	Anatoxin-A				
1,1,1-Trichloroethane	Diguat	2-Methoxyethanol 2-Propen-1-ol	Anatoxin-A Cylindrospermopsin				
Trichloroethene	Endothall	Monobromoacetic acid	E 12/49/42				

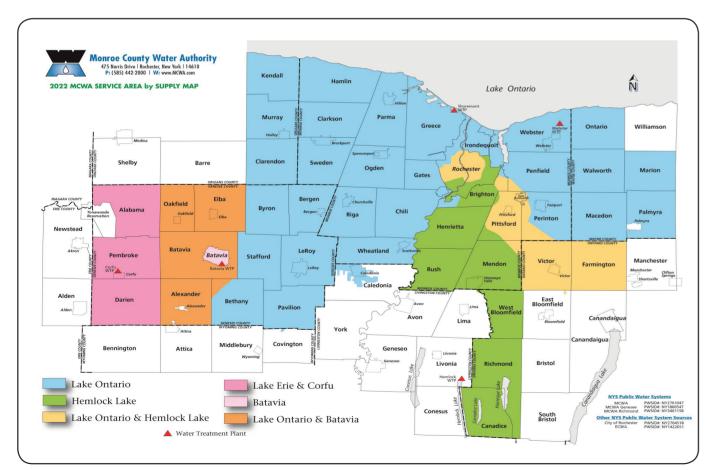
For more information on MCWA's water quality monitoring program call Customer Service at 585-442-7200 or visit our website at www.mcwa.com

MONROE COUNTY WATER AUTHORITY

Abundant. Inexpensive. Pure.

The Monroe County Water Authority is the third largest water supplier in New York State, producing and delivering an average of 21 billion gallons of drinking water each year. As a public benefit corporation organized in 1950 under the New York State Public Authorities Law, our sole purpose is to provide you with quality water and reliable service at an affordable price.

Many communities have been unable to or unwilling to make the investments necessary to maintain their water systems. That's not the case with the Monroe County Water Authority. In 2022, we invested \$22.37 million in infrastructure improvements. Our commitment to efficiency and cost controls is shown in our water rate history. Our rates are below national average and the lowest 25% for northeast U.S. suppliers. It costs an average Water Authority residential customer about \$28 a month for all the water they need.


The Monroe County Water Authority's 205 employees are dedicated to providing you all the clean, safe drinking water you need, whenever you need it.

This annual water quality report is being provided to all of our customers in compliance with U.S. Environmental Protection Agency (USEPA) and New York State Department of Health (NYSDOH) regulations. For more information visit our website at www.MCWA.com

Source and Treatment.

Our primary water source is Lake Ontario, one of North America's five Great Lakes. Surface water is treated at our Shoremont Plant in the town of Greece and at our Webster Plant in town of Webster. We also operate the Corfu Plant, a small groundwater source supply in the village of Corfu and purchase water from the city of Rochester (Rochester) and the Erie County Water Authority (ECWA). All the water supply sources we use are located within the Great Lakes watershed area. The boundaries between the supply areas change daily as we manage the sources to optimize delivery of water to our customers.

The New York State Department of Health has evaluated the susceptibility of water supplies statewide to potential contamination under the Source Water Assessment Program (SWAP). In general, the Great Lakes sources used by MCWA and ECWA are not very susceptible because of their size and quality. Hemlock and Canadice Lakes, sources for Rochester's Hemlock Plant, are not very susceptible because of their size and controlled watersheds. The groundwater aguifer source used by the Corfu Plant

is more susceptible, but the confined nature of the aquifer provides protection against the few nearby potential contamination sources. Because storm and wastewater contamination are potential threats to any source water, the water provided to our customers undergoes rigorous treatment and testing prior to its delivery.

The Shoremont and Webster Plants and the purchase water suppliers all use a similar treatment process that includes pH adjustment, coagulation, filtration, and disinfection. Coagulants are added to clump together suspended particles in the source waters, enhancing their removal during filtration. Chlorine is used to disinfect the water and to provide the residual disinfectant preserves the quality of the water as it travels from each plant to your home. Fluoride is added to help prevent tooth decay. The treatment process at the Corfu Plant consists of filtration, softening, and disinfection with chlorine. These water treatment plants operate in compliance with all the NYSDOH and USEPA regulatory requirements that apply.

For more information on the SWAP and how you can help protect the source of your drinking water, contact MCWA's Customer Service Department at (585) 442–7200 or visit our website at www MCWA com

MCWA STATISTICS

LAKE ONTARIO WATER WITHDRAWAL:	54.5	Million Gallons Per Day
AVERAGE SYSTEM USE:	58.8	Million Gallons Per Day
NON-BILLABLE WATER: (FIREFIGHTING, FLUSHING, MAINTENANCE, LEAKS)	7.83	Million Gallons Per Day
AVERAGE RESIDENTIAL ANNUAL COST:	\$334.69	Per Year
POPULATION SERVED:	785,892	Retail and Wholesale
NUMBER OF ACCOUNTS:	189,577	
MILES OF WATER MAINS:	3,435	
NUMBER OF FIRE HYDRANTS:	27,350	

Water Quality.

Last year, as in years past, your tap water met all federal and state drinking water health standards. The MCWA is proud to report that our system did not violate a maximum contaminate level or any other water quality standard. This report is an overview of last year's water quality. Drinking water sources (both tap and bottled water) include lakes, reservoirs, rivers and streams, springs, and groundwater wells. As water travels over land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activities. Contaminates that may be present in untreated water include inorganic and organic chemicals, pesticides and herbicides, and radioactive and microbiological contaminates. In order to ensure that your tap water is safe to drink, the NYSDOH and USEPA establish regulations that set limits on contaminate levels in water provided by public water systems. These limits are known as Maximum Contaminate Levels (MCLs). The regulations also specify testing, reporting, and public notification for each contaminate. The MCWA's monitoring program substantially exceeds NYSDOH and USEPA requirements.

Cryptosporidium.

Cryptosporidium is a microbial pathogen present in varying concentrations in many surface waters and groundwater under the direct influence of surface water. Cryptosporidium is removed / inactivated through a combination of filtration and disinfection or by disinfection.

In 2022, the MCWA analyzed a total of four source water samples for Cryptosporidium taken from Lake Ontario at the Shoremont and Webster water treatment plants. Cryptosporidium was detected in two raw water samples, one collected in February and one collected in November, at the Shoremont water treatment plant. In our treatment processes at this plant, Cryptosporidium is removed / inactivated by a combination of filtration and disinfection

Fluoride.

The MCWA is one of many New York state public water utilities providing water with a controlled, low level concentration of fluoride for consumer dental health protection. According to the U.S. Centers for Disease Control and Prevention, fluoride is very effective in preventing cavities when present at an optimum level of 0.7 mg/L or part per million. To ensure optimal dental protection, the NYSDOH requires that we monitor fluoride levels on a daily basis. In 2022, the fluoride levels in your water were within 0.2 mg/L of the CDC's recommended optimal level 97.7% of the time with an

County and state Departments of Health also review our operating, monitoring, and testing data for regulatory compliance and independently monitor guality in our water distribution system.

Some constituents we tested for were detected but at concentrations well below the allowable MCLs. It is important to remember all drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminates. The presence of contaminates does not necessarily indicate that the water poses a risk to health. Additional information about contaminates and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to disease-causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as chemotherapy patients, organ transplant recipients, people with HIV / AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. USEPA / CDC (U.S. Centers for Disease Control and Prevention) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium, Giardia, and other microbiological contaminates are available from the USEPA's Safe Drinking Water Hotline at 1-800-426-4791, the Monroe County Department of Public Health, 111 Westfall Road, Rochester, New York 14620, (585) 753-5564, or your local county health department.

The MCWA encourages individuals with weakened immune systems to consult their health care provider regarding appropriate precautions to avoid infection. Ingestion of Cryptosporidium may cause cryptosporidiosis, an intestinal illness, and may spread through means other than drinking water. Person to person transmission may also occur in day care centers or other settings where handwashing practices are inadequate. Please contact your local health department for more information on cryptosporidiosis.

average concentration of 0.69 mg/L for water produced by the Shoremont and Webster Plants. The highest monitoring level was 1.15 mg/L, below the 2.2 mg/L MCL for fluoride in water.

Lead in Drinking Water.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women, infants, and young children. There is no detectable lead in the water we deliver to your home. Lead in drinking water is primarily from lead-bearing materials and components associated with service lines and home plumbing. Although our testing indicates this is not a problem for our customers, it is possible that lead levels at you home might be higher than at other homes in the community as a result of materials used in your home's plumbing. The Monroe County Water Authority is responsible for providing high quality drinking water but cannot control the variety of materials used in plumbing components.

When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your faucet tap for 30-seconds to 2-minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at: www.MCWA.com/my-water/water-quality/my-water-lead-in-drinking-water or from the USEPA's Safe Drinking Water Hotline 1-800-426-4791 and website: www.EPA.aov/safewater/lead.

Taste and Odor.

Sometimes you may find your water tastes or smells like chlorine. The water is safe to drink. We are required to maintain a chlorine residual in the water supply distribution system prevent the growth of bacteria. To eliminate or reduce the taste of chlorine in your water, simply store tap water in a container overnight in your refrigerator. An inexpensive carbon media filter can also be used for this purpose.

Home Treatment Units.

There are businesses that sell home treatment units by telling you water supplied by the Monroe County Water is not safe. Save your money. The water we supply is consistently better than the drinking water regulations require and we can prove it.

Conservation.

Lake Ontario and the other Great Lakes provide an abundance of water to the communities we serve, and our customers greatly benefit by having this natural resource close to home. However, it takes power to treat and deliver water to your house. Therefore, conserving energy is helpful to providing clean, safe water to you.

Although our water rates are below the national average, no one wants to pay for water that is wasted whether by accident or on purpose. To save water, fix leaky faucets and toilets promptly, replace washer gaskets when garden hoses start to drip, and water your lawn in the early morning. After 10:00 am the sun's heat draws water from the lawn through evaporation. When you irrigate early, you can water less because more of the water is absorbed into the lawn and soil. To find more water saving tips, visit us online at: www.MCWA.com.

FOR MORE INFORMATION

If you have questions about this report, your bill, or Monroe County Water Authority operations, then call (585) 442-7200. To view the MCWA Board of Directors meeting schedule, visit us online at www.MCWA.com