

Monroe County Water Authority 475 Norris Drive Rochester, New York 14610

# Quality Report Annual Water 2020

MCWA RICHMOND GENESEE MCWA MCWA

PWSID# 2701047 PWSID# 1800547 PWSID# 3401158

Monroe County Water Authority 2020 Annual Water Quality Report



The Monroe County Water Authority is pleased to provide you this report on the quality of your drinking water which describes its sources, treatment and test results.

# **MCWA Water Quality Summary Table**

2020 Calendar Year Results

|                              |               |      |     | 2020 C                 | alendar rear i | tesuits -             |                 |                                                 |                                |
|------------------------------|---------------|------|-----|------------------------|----------------|-----------------------|-----------------|-------------------------------------------------|--------------------------------|
|                              | Supply -      |      |     | MCWA Production Water: |                | MCWA Purchased Water: |                 |                                                 |                                |
|                              |               |      |     | SWTP & WWTP -          | CWTP -         | Rochester -           | ECWA -          | Likely Source:                                  | Water<br>Quality<br>Violation: |
| Detected Substances:         | Source -      |      |     | Lake Ontario           | Well Field     | Hemlock Lake          | Lake Erie       |                                                 |                                |
|                              | (Source Type) |      |     | (Surface Water)        | (Groundwater)  | (Surface Water)       | (Surface Water) |                                                 |                                |
|                              | Units         | MCLG | MCL |                        | Range of det   | ected values:         |                 |                                                 | Yes or No                      |
| Barium                       | mg/L          | 2    | 2   | 0.019 - 0.023          | 0.1 - 0.11     | 0.017                 | 0.021           | Erosion of natural<br>deposits                  | No                             |
| Chloride                     | mg/L          | NA   | 250 | 22 - 29                | 48 - 68        | 37 - 39               | 21 - 24         | Naturally occurring                             | No                             |
| Fluoride                     | mg/L          | NA   | 2.2 | 0.5 - 1                | 0.11 - 0.14    | 0.08 - 0.78           | 0.58 - 0.8      | Natural and additive -<br>promotes strong teeth | No                             |
| Nitrate                      | mg/L          | 10   | 10  | 0.21 - 0.39            | ND             | 0.25                  | 0.32            | Erosion of natural<br>deposits                  | No                             |
| Perfluorohexanesulfonic acid | ng/L          | NS   | NS  | ND - 2                 | ND             | ND                    | ND              | Used to manufacture<br>textiles                 | No                             |
| Perfluorooctanesulfonic acid | ng/L          | NS   | 10  | 2.5 - 2.8              | ND             | ND                    | ND              | Used to manufacture<br>textiles                 | No                             |
| Perfluorooctanoic acid       | ng/L          | NS   | 10  | ND - 2.2               | ND             | ND                    | ND              | Used to manufacture<br>textiles                 | No                             |
| Sodium                       | mg/L          | NA   | NS  | 14 - 17                | 46 - 100 *     | 19 - 21 *             | 12 - 14         | Naturally occurring                             | No                             |
| Sulfate                      | mg/L          | NA   | 250 | 25 - 28                | 48 - 52        | 12                    | 20 - 21         | Naturally occurring                             | No                             |

Turbidity - Turbidity is a measure of cloudiness of the water. Turbidity has no health effects. MCWA monitors turbidity because it is a good indicator of the effectiveness of our filtration systems and water quality. State regulations require that turbidity must always be below 1 NTU in the combined filter effluent. The regulations also require that 95% of samples collected from the entry point have measurements elow 0.3 NTU and the highest monthly average for distribution system samples be below 5 NTU. Averages, annual ranges and lowest monthly percentages are listed.

| Turbidity - Entry Point                                                      | NTU                     | NA                                | тт                         | 0.04 (0.02 - 0.09)<br>100% < 0.3 NTU               | NR                                                    | 0.06 (0.04 - 0.1)<br>100% < 0.3 NTU                 | 0.1 (0.04 - 0.18)<br>100% < 0.3 NTU                  | Soil Runoff                              | No                 |
|------------------------------------------------------------------------------|-------------------------|-----------------------------------|----------------------------|----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------------|------------------------------------------------------|------------------------------------------|--------------------|
| Turbidity - Distribution                                                     | NTU                     | NA                                | 5                          | 7 - 11/19/2020                                     | 0.88 - 7/30/2020                                      | 7 - 11/19/2020                                      | 0.88 - 7/30/2020                                     | Soil Runoff                              | No                 |
| Microbial Pararmeters - No more that                                         | an 5% of n              | nonthly sar                       | mples can b                | e positive. The highest n                          | nonthly % positive and n                              | umber of samples is listed                          | d.                                                   |                                          |                    |
| Total Coliform Bacteria                                                      | NA                      | 0                                 | тт                         | 0.39% - November<br>2 samples                      | 2.86% - March<br>1 sample                             | 0.39% - November<br>2 samples                       | 2.86% - March<br>1 sample                            | Naturally occurring                      | No                 |
| Source Water Microbial Pathogens -<br>disinfection or by disinfection alone. | The highe               | est positive                      | month and                  | number of samples is lis                           | sted. In our treatment p                              | rocesses, Cryptosporidiun                           | n is removed / inactivate                            | d through a combination of               | filtration and     |
| Cryptosporidium                                                              | Cysts/L                 | 0                                 | тт                         | WWTP - 1 (March)<br>1 Sample                       | NR                                                    | ND                                                  | ND (2017)                                            | Naturally occurring                      | No                 |
| Disinfectant and Disinfectant By-pro<br>DBPs (Total Trihalomethanes and Halo | ducts (DB<br>pacetic Ac | <b>Ps)</b> - Chlor<br>ids) the an | ine has a M<br>nual system | RDL (Maximum Residual<br>average, range for all lo | Disinfectant Level) and<br>ocations, and highest loca | MRDLG (MRDL Goal) rath<br>ational running annual av | er than an MCL and MCI<br>erage for all locations ar | LG (Averages and ranges are<br>e listed. | e listed). For the |
| Chlorine Residual - Entry Point                                              | mg/L                    | NA                                | MRDL = 4                   | 1.15 (0.78 - 1.38)<br>0.77 (0.46 - 0.97)           | 0.84 (0.71 - 1.1)                                     | 0.84 (0.71 - 1.1)                                   | 1.49 (1.29 - 1.64)                                   | Additive for control of microbes         | No                 |
| Chlorine Residual - Distribution                                             | mg/L                    | NA                                | MRDL = 4                   | 0.55 (ND - 1.83)                                   | 0.53 (ND - 1.27)                                      | 0.55 (ND - 1.83)                                    | 0.53 (ND - 1.27)                                     | Additive for control of<br>microbes      | No                 |
| Total Trihalomethanes (TTHMs)                                                | μg/L                    | NA                                | 80                         | 34.7 (16 - 58)<br>Max. LRAA = 46.5                 | 40 (18 - 63)<br>Max. LRAA = 53                        | 34.7 (16 - 58)<br>Max. LRAA = 46.5                  | 40 (18 - 63)<br>Max. LRAA = 53                       | Byproduct of water chlorination          | No                 |
| Haloacetic Acids (HAAs)                                                      | μg/L                    | NA                                | 60                         | 9.7 (ND - 22)<br>Max. LRAA = 14.8                  | 10.7 (3.1 - 23)<br>Max. LRAA = 11.5                   | 9.7 (ND - 22)<br>Max. LRAA = 14.8                   | 10.7 (3.1 - 23)<br>Max. LRAA = 11.5                  | Byproduct of water chlorination          | No                 |
| Lead and Copper - 90% of samples m                                           | ust be les              | s than the                        | Action Leve                | l (AL). The 90th Percenti                          | ile, the number of sampl                              | es exceeding the AL, and                            | the range of results are I                           | isted. (2018 Monitoring per              | riod)              |
| Copper - Customer Tap Samples                                                | mg/L                    | 1.3                               | AL = 1.3                   | 0.160 (None)<br>0.005 - 0.200                      | 0.110 (None)<br>0.005 - 0.240                         | 0.160 (None)<br>0.005 - 0.200                       | 0.110 (None)<br>0.005 - 0.240                        | Corrosion of household<br>plumbing       | No                 |
| Lead - Customer Tap Samples                                                  | μg/L                    | 0                                 | AL = 15                    | 7.2 (Two)<br>ND - 29                               | 3.0 (One)<br>ND - 76                                  | 7.2 (Two)<br>ND - 29                                | 3.0 (One)<br>ND - 76                                 | Corrosion of household<br>plumbing       | No                 |

There is no MCL set for sodium in water. However, EPA recommends that water containing more than 20 mg/l of sodium should not be used for drinking by people on severely restricted sodium diets. Water ning more than 270 mg/l of sodium should not be used for drinking by people on moderately restricted sodium d

minant Monitoring (UCMR4) - Every few years the USEPA issues a new list of up to 30 unregulated contaminants for which public water systems must monitor. This provides baseline nce data that the EPA combines with toxicological research to make decisions about future drinking water regulations. or the fourth list from 2018 - 2020 For r ess go to https://drinktap.org/Water-Info/Whats-in-My-Water/Unregulated-Contaminant-Monitoring-Rule-UCMR

| Alcohols, Indicators,<br>Metals, Pesticides, SVOCs, | Entry Points:        |     |                          | Lake Ontario Supplies - |                 | Purchased Water Supplies - |                  | Groundwater Supply - | Water Quality<br>Violation: |
|-----------------------------------------------------|----------------------|-----|--------------------------|-------------------------|-----------------|----------------------------|------------------|----------------------|-----------------------------|
| and Cyantoxins:                                     | Units                | MCL |                          | SWTP                    | WWTP            | Rochester                  | ECWA             | CWTP                 | Yes or No                   |
| Manganese                                           | μg/L                 | NA  |                          | ND                      | ND              | ND                         | 3.5 (0.77 - 6.3) | 8.0 (6 -10)          | NA                          |
| Bromide                                             | μg/L                 | NA  |                          | 36.3 (36 - 37)          | 36 (34 - 37)    | ND - 22                    | NR               | NR                   | NA                          |
| Total Organic Carbon                                | mg/L                 | NA  |                          | 2.3 (2 - 2.4)           | 2.2 (1.9 - 2.3) | 2.48 - 2.68                | NR               | NR                   | NA                          |
| HAA Groups:                                         | Distribution System: |     | Combined System Summary: |                         |                 |                            |                  |                      |                             |
| Total HAA (5)                                       | μg/L                 | 60  |                          | 14.1 (0.74 - 31)        |                 |                            |                  | No                   |                             |
| Total HAA (6) Br                                    | μg/L                 | NA  |                          | 7.4 (ND - 12)           |                 |                            |                  | NA                   |                             |
| Total HAA (9)                                       | μg/L                 | NA  |                          | 21 (7.4 - 42)           |                 |                            |                  | NA                   |                             |
| Bromochloroacetic acid                              | μg/L                 | NA  |                          | 2.2 (ND - 4.4)          |                 |                            |                  | NA                   |                             |
| Bromodichloroacetic acid                            | μg/L                 | NA  |                          | 3.1 (ND - 5.9)          |                 |                            |                  | NA                   |                             |
| Chlorodibromoacetic acid                            | μg/L                 | NA  |                          | 1 (ND - 1.6)            |                 |                            |                  | NA                   |                             |
| Dibromoacetic acid                                  | μg/L                 | NA  |                          | 0.5 (ND - 1.4)          |                 |                            |                  | NA                   |                             |
| Dichloroacetic acid                                 | μg/L                 | NA  |                          | 6 (0.74 - 15)           |                 |                            |                  | NA                   |                             |
| Trichloroacetic acid                                | μg/L                 | NA  |                          | 7.5 (ND - 15)           |                 |                            |                  | NA                   |                             |

## Key Terms Used In Water Quality Table

MCL = Maximum Contaminant Level, the highest level of a

contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as possible.

MCLG = Maximum Contaminant Level Goal, the level of a

contaminant below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

**MRDL** = Maximum Residual Disinfectant Level, the highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

**MRDLG** = Maximum Residual Disinfectant Level Goal, the level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contamination.

**LRAA** = Locational Running Annual Average The annual average contaminant concentration at a monitoring site.

pCi/L = picoCuries per liter

**TT** = Treatment Technique, a required process intended to reduce the level of a contaminant in drinking water.

**AL** = Action Level, the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

**ND** = Not Detected, absent or present at less than testing method detection level. All testing methods are EPA approved with detection limits much less than the MCL.

**NA** = Not applicable

**NR** = Not Required

**NS** = No standard

mg/L = milligram (1/1,000 of a gram) per liter = ppm = parts per million

 $\mu g/L = microgram (1/1,000,000 \text{ of a gram})$ per liter = ppb = parts per billion

ng/L = nanogram (1/1,000,000,000 of a gram) per liter = ppt = parts per trillion

NTU = Nephelometric Turbidity Unit, a measure of water clarity.

**CWTP** = Corfu Water Treatement Plant.

**SWTP** = Shoremnt Water Treatement Plant

**WWTP** = Webster Water Treatment Plant.

**MCWA** = Monroe County Water Authority

**Rochester** = City of Rochester

**ECWA** = Erie County Water Authority

#### **Compounds Tested For But Not Detected**

| -                                  | •                      |                                   | -                                             | 1 |
|------------------------------------|------------------------|-----------------------------------|-----------------------------------------------|---|
| nzene                              | Toluene                | Carbaryl                          | Ethoprop                                      |   |
| omobenzene                         | 1,2,3-Trichlorobenzene | Dalapon                           | Oxyfluoren                                    |   |
| omochloromethane                   | 1,2,4-Trichlorobenzene | Di(2-Ethylhexyl) Adipate          | Profenofos                                    | L |
| omomethane                         | 1,1,1-Trichloroethane  | Di(2-Ethylhexyl) phthalate (DEHP) | Tebuconazole                                  | L |
| Butylbenzene                       | 1,1,2-Trichloroethane  | Dicamba                           | Permethrin, cis & trans                       | L |
| -Butylbenzene                      | Trichloroethene        | Dieldrin                          | Tribufos                                      | L |
| t-Butylbenzene                     | Trichlorofluoromethane | Dinoseb                           | Butylated hydroxyanisole                      | L |
| bon Tetrachloride                  | 1,2,3-Trichloropropane | Diquat                            | o-Toluidene                                   | L |
| orobenzene                         | 1,2,4-Trimethylbenzene | Endothall                         | Quinoline                                     | L |
| oroethane                          | 1,3,5-Trimethylbenzene | Glyphosate                        | 1-Butanol                                     | L |
| oromethane                         | Vinyl Chloride         | Hexachlorobenzene                 | 2-Methoxyethanol                              | L |
| Thlorotoluene                      | o-Xylene               | Hexachlorocyclopentadiene         | 2-Propen-1-ol                                 | L |
| Thlorotoluene                      | m, p-Xylene            | 3-Hydroxycarbofuran               | Monobromoacetic acid                          | L |
| promomethane                       | Total Xylene           | Methomyl                          | Monochloroacetic acid                         | L |
| -Dichlorobenzene                   | Alachlor               | Metolachlor                       | Tribromoacetic acid                           | L |
| -Dichlorobenzene                   | Aldicarb               | Metribuzin                        | 1, 4-Dioxane                                  | L |
| -Dichlorobenzene                   | Aldicarb sulfoxide     | Oxamyl (vydate)                   | N-ethyl Perflurooctanesulfonamidoacetic acid  | L |
| hlorodifluoromethane               | Aldicarb sulfone       | Perchlorate                       | N-methyl Perflurooctanesulfonamidoacetic acid | L |
| Dichloroethane                     | Atrazine               | Picloram                          | Perfluorobutanesulfonic acid                  | L |
| -Dichloroethane                    | Carbofuran             | Propachlor                        | Perfluorodecanoic acid                        | L |
| -Dichloroethene                    | Chlordane              | Simazine                          | Perfluorododecanoic acid                      | L |
| -1,2-Dichloroethene                | Dibromochloropropane   | 2, 3, 7, 8-TCDD (Dioxin)          | Perfluoroheptanoic acid                       | L |
| ns-1,2-Dichloroethene              | 2, 4-D                 | Antimony                          | Perfluorohexanoic acid                        | L |
| -Dichloropropane                   | Endrin                 | Beryllium                         | Perfluorononoic acid                          | L |
| -Dichloropropane                   | Ethylene Dibromide     | Chromium                          | Perfluorotetradecanoic acid                   | L |
| -Dichloropropane                   | Heptachlor             | Cyanide                           | Perfluorotridecanoic acid                     | L |
| -Dichloropropene                   | Heptachlor Epoxide     | Mercury                           | Perfluoroundecanoic acid                      | L |
| -Dichloropropene(cis)              | Lindane (gamma-BHC)    | Nickel                            | Total Microcystin                             | L |
| -Dichloropropene(trans)            | Methoxychlor           | Nitrite                           | Microcystin-LA                                | L |
| iylbenzene                         | p,p' DDD               | Selenium                          | Microcystin-LF                                | L |
| xachlorobutadiene                  | p,p' DDE               | Silver                            | Microcystin-LR                                | L |
| sopropyltoluene                    | p,p' DDT               | Thallium                          | Microcystin-LY                                | L |
| thyl Tert-butyl ether (MTBE)       | PCB's Total            | Zinc                              | Microcystin-RR                                | L |
| thylene Chloride (Dichloromethane) | Pentachlorophenol      | Surfactants (Foaming Agents)      | Microcystin-YR                                | L |
| Propylbenzene                      | Toxaphane              | Giardia Lamblia                   | Nodularin                                     | L |
| rrene                              | 2, 4, 5-TP (Silvex)    | Germanium                         | Anatoxin-A                                    | ł |
| ,1,2-Tetrachloroethane             | Aldrin                 | alpha-Hexachlorocyclohexane       | Cylindrospermopsin                            | l |
| ,2,2-Tetrachloroethane             | Benzo(a)pyrene         | Chlorpyrfos                       |                                               | ł |
| rachloroethene                     | Butachlor              | Dimethipin                        |                                               | L |

For more information on MCWA's monitoring program call Customer Service at 585-442-7200.

# MONROE COUNTY WATER AUTHORITY



## Abundant. Inexpensive. Pure.

The Monroe County Water Authority is the third largest water supplier in New York State, producing and delivering an average of 20 billion gallons of drinking water every year. As a public benefit corporation organized in 1950 under the New York State Public Authorities Law, our sole purpose is to provide you with

quality water and reliable service at an affordable price.

Many communities have been unable or unwilling to make the investments necessary to maintain their water systems. That's not the case with the Monroe County Water Authority. In 2020 we invested \$20.82 million in infrastructure improvements. Our commitment to efficiency and cost control is shown in our water rate history. Our rates are below the national average and the lowest 25% for northeast U.S. suppliers. It costs an average Authority residential customer about \$27 a month for all the water they need.

The Monroe County Water Authority's 215 employees are dedicated to providing you all the clean, safe drinking water you need, whenever you need it.

This annual water quality report is being provided to all of our customers in



compliance with U.S. Environmental Protection Agency (USEPA) and New York State Department of Health regulations. For more information check our website at www.MCWA.com.

#### Source and Treatment

Our primary water source is Lake Ontario which is treated at our Shoremont Plant in Greece and our Webster Plant in Webster. We also operate the Corfu Plant, a small well supply in the Village of Corfu, and purchase water from the City of Rochester and the Erie County Water Authority (ECWA). The Service Area Map in this report shows the typical service area for each of the treatment plants. The boundaries between the service areas change day to day as we manage the sources to optimize water delivery to our customers.

The New York State Health Department has evaluated the susceptibility of water supplies statewide to potential contamination under the Source Water Assessment Program (SWAP). In general, the Great Lakes sources used by Shoremont and ECWA are not very susceptible because of the size and quality of the Great Lakes. Hemlock and Canadice Lakes, used by the Hemlock Plant, are also not very susceptible because of their size and controlled

watersheds. The well water used by the Corfu Plant is more susceptible, but the confined nature of the aquifer provides protection against the few nearby potential contaminant sources. Because storm and waste water contamination are potential threats to any source water, the water provided to our customers undergoes rigorous treatment and testing prior to its delivery.

The Shoremont Plant and the purchased water producers all use a similar treatment process: coagulation, filtration and disinfection. Coagulants are added to clump together suspended particles, enhancing their removal during filtration. Chlorine is used to disinfect the water and to provide the residual disinfectant that preserves the sanitary quality of the water as it travels from each plant to your home. Fluoride is also added to help prevent tooth decay. The treatment process at the Corfu Water Plant consists of filtration, softening and disinfection with chlorine.

These water treatment plants are in full compliance with all New York State and USEPA operational and monitoring requirements.

For more information on the State's Source Water Assessment plan and how you can help protect the source of your drinking water, contact MCWA Customer Service at (585) 442-7200 or visit our website at www.MCWA.com.



NUMBER OF ACC



## Water Quality

Last year, as in years past, your tap water met all State drinking water health standards. MCWA is proud to report that our system did not violate a maximum contaminate level or any other water quality standard. This report is an overview of last year's water quality.

Drinking water sources (both tap and bottled water) include lakes, reservoirs, rivers and streams, springs and wells. As water travels over land or through the ground, it dissolves naturally occurring minerals and can pick up substances resulting from animal or human activity. Contaminants that may be present in untreated water include inorganic and organic chemicals, pesticides and herbicides, and radioactive and microbiological contaminants. In order to ensure that your tap water is safe to drink, the State and the USEPA established regulations that set limits on contaminant levels in water provided by public water systems. These limits are known as Maximum Contaminant Levels (MCLs). The regulations also specify testing, reporting, and public notification requirements for each contaminant. MCWA's monitoring program substantially exceeds USEPA and State Health Department requirements. Departments of health also review our operating and monitoring data for compliance and independently monitors our distribution system.

Some constituents we tested for were detected, but at levels well below the allowable MCL. It's important to remember all drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants.

The presence of contaminants does not necessarily indicate that the water poses a health risk. Additional information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at (800) 426-4791

Some people may be more vulnerable to disease-causing microorganisms or pathogens in drinking water than the general population. Immuno-compromised persons such as chemotherapy patients, organ transplant recipients, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice from their health care providers about drinking water. EPA/CDC (U.S. Centers for Disease Control) guidelines on appropriate means to lessen the risk of infection by

#### Cryptosporidium

Cryptosporidium is a microbial pathogen present in varying concentrations in many surface waters and groundwater under the direct influence of surface water. Cryptosporidium is removed / inactivated through a combination of filtration and disinfection or by disinfection. In 2020, the MCWA analyzed a total of 16 source water samples for Cryptosporidium taken from Lake Ontario at our Shoremont and Webster water treatment plants. Cryptosporidium was detected in one raw water sample collected in March at the Webster water treatment plant. In our treatment processes at this plant Cryptosporidium is removed / inactivated by a combination of filtration and disinfection.

MCWA encourages individuals with weakened immune systems to consult their health care provider regarding appropriate precautions to avoid infection. Ingestion of Cryptosporidium may cause cryptosporidiosis, an intestinal illness, and may spread through means other than drinking water. Person to person transmission may also occur in day care centers or other settings where handwashing practices are poor. For more information on cryptosporidiosis, please contact your local health department.

# Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women, infants, and young children. There is no detectable lead in the water we deliver to your home. Lead in drinking water is primarily from lead-bearing materials and components associated with service lines and home plumbing. Although our testing indicates this is not a problem for our customers, it is possible that lead levels at your home may be higher than at other homes in the community as a result of materials used in your home's plumbing. The Monroe County Water Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components.

# MCWA STATISTICS

| WATER WITHDRAWN FROM LAKE ONTARIO                                     | 53.6 Million Gallons Per Day        |
|-----------------------------------------------------------------------|-------------------------------------|
| AVERAGE SYSTEM USE                                                    | <b>57</b> Million Gallons Per Day   |
| NON-BILLABLE WATER<br>(MAINTENANCE, FLUSHING,<br>FIREFIGHTING, LEAKS) | <b>6.36</b> Million Gallons Per Day |
| ANNUAL COST FOR<br>AVERAGE RESIDENTIAL CUSTOMER                       | \$327.31 Per Year                   |
| POPULATION SERVED                                                     | 778,373 Wholesale and Retail        |
| NUMBER OF ACCOUNTS                                                    | 187,745                             |
| MILES OF WATER MAINS                                                  | 3,385                               |
| NUMBER OF FIRE HYDRANTS                                               | 26,840                              |

Cryptosporidium, Giardia, and other microbiological contaminants are available from the Safe Drinking Water Hotline (800) 426–4791 or the Monroe County Department of Public Health, 111 Westfall Road, Rochester, NY 14620, (585) 753-5057.

*When your water has been sitting for several hours, you can minimize the potential for lead* exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available at www.mcwa.com/MyWater/LeadInDrinkingWater.aspx or from the USEPA's Safedrinking Water Hotline (800-426-4791) and website (www.epa.gov/safewater/lead)...

# Fluoride

MCWA is one of the many New York water utilities providing drinking water with a controlled, low level of fluoride for consumer dental health protection. According to the U.S. Centers for Disease Control, fluoride is very effective in preventing cavities when present in drinking water at an optimal level of 0.7 mg/L. To ensure optimal dental protection, the State Department of Health requires that we monitor fluoride levels on a daily basis. In 2020 the fluoride levels in your water were within 0.2 mg/L of the CDC's recommended optimal level 99.5% of the time. The highest monitoring result was 1.0 mg/L, below the 2.2 mg/L MCL for fluoride.

# FOR MORE INFORMATION

If you have questions about this report, your bill, or Monroe County Water Authority operations, call Customer Service at (585) 442-7200. To view the MCWA Board of Directors meeting schedule, visit us online at www.MCWA.com.

# Taste and Odor

Sometimes you may find your water tastes or smells like chlorine. The water is safe to drink. We are required to maintain a chlorine residual in the distribution system to prevent the growth of bacteria. To eliminate or reduce the taste of chlorine in your water, simply store tap water in a container overnight in your refrigerator. An inexpensive carbon filter can be used for this also.

# Home Treatment Units

There are businesses that sell home treatment units by telling you water supplied by the Monroe County Water Authority is not safe. Save your money. The water we provide is consistently better than the drinking water regulations require and we can prove it.

# Conservation

Lake Ontario provides an abundance of water to the communities we serve, and our customers greatly benefit by having this natural resource close to home. However, it takes power to treat and move the water to your houses. Therefore, conserving energy is helpful to providing clean, safe water to you.

Although our water rates are below the national average, no one wants to pay for water that is wasted whether by accident or on purpose. To save water, fix leaky faucets and toilets promptly, replace washers when garden hoses start to drip, and water your lawn in the early morning. After 10 a.m. the sun's heat draws water from the lawn through evaporation. When you water early, you can water less because more of the water is absorbed into the lawn. To find more water saving tips, visit us online at www.MCWA.com.

